CS 145: Introduction to Data Mining

Auto Plate Recognition
Github: https://github.com/dylanphe/auto-plate-detector.git
I. Objective:

The goal of our project focuses on using machine learning algorithms that we have learned in
class and through further research to classify the State's names that appear on all license plates we
obtained from the 50 U.S. States including Washington D.C. We aim to construct and train models that
can effectively perform this classification task. The project involves comparing performances between
different machine learning models, as well as taking into account their complexity, training times, and
memory efficiency. The metrics we intend to use for our models evaluation and comparison include F1
Scores and accuracy. In addition, we train and test the performance of these algorithms on a dataset of
diverse license plate images with varying lighting conditions, quality and sizes.

II.  Obtaining and Preparing Dataset:

The dataset consists of 3,279 images of license plates from all 50 U.S. states plus Washington
DC, which were obtained from sources 1 and 2 in our references.

We then organized this data into a table format of dimensions 3,279x2(file_list.csv). Each entry
in the table contains two attributes, namely "Label" and "Image", which serve to identify each image
file along with its corresponding label. In addition, we also split them into 3 different sets:

m The training dataset consists of 2951 images
m The validation dataset consists of 500 images
m The testing dataset consists of 328 images

In order to enhance the visibility of the State's name letters against the background in our image
dataset, we employ several pre-processing steps, which include image resize, intensity enhancement,
grayscale conversion, image segmentation, color inversion, and normalization. Specifics of these steps
can be found in our code. With these preprocessing steps, we’ve improved our mode’s best
performance by around 40-50%.

III. Models Implementation:

For our project, we have chosen to construct and compare three distinct machine learning
models to address the task of license plate’s States classification. The models we have selected offer
different approaches to tackle the classification task, allowing us to gain insights into their strengths
and weaknesses as shown below.

1. Model 1: Convolution Neural Networks (CNNs)

As we've learned in class, Convolutional Neural Networks or CNNs have proven to be highly
effective in images classification tasks. These deep learning models are specifically designed to
process visual data and capture complex patterns and features from the input images. With that said,
we have decided to construct these deep neural networks as our first model for the task.

The architecture of the Convolutional Neural Network (CNN) was implemented using the
Sequential class from the Keras library (model architecture in code). The CNN architecture consists of
five convolutional blocks, each applying 2D convolution operations over the spatial dimensions of the
input images. After the convolution operation, the ELU activation function is applied to introduce
non-linearity into the model. Following each convolutional block, there are three additional operations
to process the output before passing it to the next block:

m  Max-Pooling operation: reduces the spatial dimensions of the feature maps by downsampling
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m  Batch Normalization: applied to normalize the activations of the previous layer
m Dropout Operation: A form of regularization that randomly selects a fraction of input
An additional operation is applied to the output of the fifth block to flatten the matrix before
feeding it to the last fully connected dense layer with softmax as its activation function. The model is
then trained on the training dataset to optimize its weight parameters. A learning rate of 0.001, a batch
size of 3 were chosen to train our model for 10 epochs. It was able to achieve a training accuracy of
over 98% and a validation accuracy of approximately 86%.
As a result, the trained CNNs model was able to predict the test dataset with a 80% accuracy.
This indicates that the model performed well in classifying the test data, correctly predicting the states
of license plate images with a high level of accuracy. Depending on the application and the desired
level of performance, this testing accuracy may be satisfactory or require further improvements.
Factors such as capturing plate images at random angles, in poor lighting conditions, or while in
motion can significantly impact the image quality.

2. Model 2: Feed Forward Neural Networks (FFNNs)

As a contrast to the CNN model that was built, we now focused our attention on a slightly
different but less complex algorithm for constructing our next model. The feedforward neural networks
were also implemented using the sequential class in keras (model architecture in code).

The input of the basic two layer neural network is a flattened image, which is fed to the first
Dense layer with 256 neurons that applies the ReLU activation function. To prevent overfitting, a
Dropout process is also added to help prevent the model from relying too heavily on specific neurons,
promoting better generalization to unseen data. Finally, the model ends with another Dense layer
consisting of 51 neurons to produce the output for the 51 classes we have in our classification task
using a softmax function.

The model is then trained in a similar manner to our first model, but achieves only around 3%
of accuracy for both the training and the validation dataset. As expected, it also didn’t perform well
when predicting the testing data. One of the main reasons that lead to this poor prediction result of
4.26% is due to the fact that the model is too simple to effectively classify complex images. This
FFNN model is a basic 2-layer fully connected neural network that lacks the ability to capture any
meaningful spatial relationships and patterns within the images. These images as visualized earlier
contained intricate details and local features that required more sophisticated models, such as
convolutional neural networks (CNN) to extract and analyze.

3. Model 3: Pre-train CNNs - ResNetS0
The third model that we have used is a "ResNet50 model", which is a deep convolutional neural

network architecture best known for its excellent performance in image classification tasks. This model
provided by Keras has been pre-trained on the large-scale ImageNet dataset with millions of labeled
images across various categories. For this model, we define the shape of the input images to be (367,
1000, 3) since the ResNet50 model only works on images with more than 1 color channel. Similarly,
we also applied an additional flattening layer to flatten the output from the base model followed by a
dense layer that takes these flattened outputs and produces the final classification probabilities for the
51 classes.

Due to the size and the complexity of the model, we decided to train it for only 6 epochs and it
is observed that this model still outdid the CNNs model at predicting the validation dataset with the
highest accuracy achieved in the fourth epoch at 90%. One downside to this model is that the training
process becomes such a daunting task to the CPU. A test accuracy of over 85% was achieved using
this model for prediction.



Iv.

Models Comparison and Evaluation:
We used train, validation, and test accuracy as well as F1 scores as our evaluation metrics. We

will compare the performance of the models by comparing the mentioned evaluation metrics. The
following grid displays the overall best accuracies, and do note that they are not from the same epochs
as the accuracies are very similar to each other when they are at the maximum.

Model Train Accuracy Validation Accuracy Test Accuracy
CNNs 98% 86% 83%
NNs 3.5% 3.2% 4.2%
ResNet50 99% 89% 85%
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while ResNet excels with large datasets and addresses the vanishing gradient problem. As our task
involved image processing on a relatively large dataset, ResNet architecture contributed to its better
performance compared to CNN but also at the cost of a longer training time and huge memory

consumption.
V. Contributions:
Caleb Lee UID: 305 330 193 Email: bkcaleb45@g.ucla.edu

o Models comparison, calculation of evaluation metric.
Dylan Phe, UID: 505 834 475 Email: dylanphe@g.ucla.edu
o Set-up project in the notebook, prepare the dataset, plotted out confusion matrices.
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o Construct and train all 3 models
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