Part B Project Proposal

Project Name: BruinNotes
Team Name: DJ-JAYS

Team Members: Jinwoo Baik (705378164), Dylan Phe

(505834475), Smayra Ramesh (905206685), Aigi You

(405557435), Jack Zhao (405377811), Yunfan Zhong
(605313390)

Github: https://github.com/dylanphe/cs130project

https://github.com/dylanphe/cs130project

1. Design

For the last few weeks, our team has made substantial progress in implementing the BruinNotes application.

The development teams have been working in parallel on various sections of the project, which we will go

into more detail below.

1.1 Progress on Features

The table below contains information about the current progress of each main feature of our application, as

well as our plans moving forward in Part C.

Feature

Current Progress

Future Plans

Account System

Account System UI/UX are
completed with workable signup
validation, login authentication,
and forget password process. The

backend API is also complete.
User information can be stored
and retrieved from the MongoDB
database.

Add in password hashing and
cookie storage to keep users
logged in across pages.

Search System

Started to build the webpage and
routing to create a new class
page. Created general user
interface mockup as well as
general working page that has a
search bar functionality

Implement some backend
connection with search bar when
new inputs need to be added to
the options users can choose from
and make aesthetic same across

pages

Course System

The Course System webpages are
up and running with workable
UI/UX to sort notes and navigate
through different professors, and
quarters for each course.The
communication between backend
is still a work of progress.

Implement the backend data
model for CourseBucket,
CourseData, as well as, APIs to
fetch their information and update
new classes from user input.
Implement responsive design.

Sharing and Requesting Notes

Interface for sharing and
requesting forms are both
implemented as modals on the
course page. User inputs are
gathered in the frontend.

Set up communication with the
backend to fetch existing notes
and requests, update user-inputted
notes to the database, and display
them on the course note page.

Likes, Dislikes, Comments

Interactive like and dislike
buttons are implemented next to
the note links. Show comment
button, comment list, and input
comment field are displayed.

Implement connections to the
backend to update and display
user inputs.

Figure 1: Progress on various features for BruinNotes.

1.2 Class Diagram

LoginPage

ClassSearchBar

- Fields: String[4]

+ courseBucketList: CourseBuckel[0.."]

+ tryCreateUser(}: bool
+ signin{}: void
+ forgotLogin(). void

+ lookupCourse{name: String): CourseBucket[0..*]
+ addCourseBucket{department: String, code: String): void

.

D

UserDatabase

+findUserByName(name: String). User
+ findUserBylD{ID: int). User

+ addUser(user: User): void

+ remaoveUser(): void

+ upgateUserinfo(); void

+ notifyUser(message: String). void

User

- Name: String

- 1D: int

- userType: String
-registeredCourses: Course[0..*]
- email: String

+ getName(). String

+ getlD(): Int

+ getUserType(): String

+ getCourseLisi{). Course{0..*]

+ registerCourse(course: Course). void
+ getEmail{): Siring

CourseBucket

- Departement. String
- courseNumber: int
- courseList Course[0.*]

7| + addCourse(user: User, course: Course): void

+ removeCourse{user. User). void
+ gotoCourse{ID: int)

Course

e GRECRLEETEEETE TR |1 |

- Term: String

- Instructor: User

- Name: String

- notesList: Note[0.*]

+ getinstructor(): User

+ setinstructor(user: User): voic
+ gethName(). String

+ sethName{name: String): void
+ getTerm(): String

+ setTerm({ierm: Siring): void

- getMotes(). Note[0.*]

+ addNote{note: Note). void

+ displayMotes(): void

Comment

+ Author: String
+ Content: String
+ Date: String

0 é
LinkNote BaseNote
- URL: String - Extends . -/ _ puthor: String
- Title: String
+ getURL{): String - Date: String
- Week int

Rating

-user: User
- ratingStatus: String i}

+ getUser(): User
+isLike(): bool

. ——|+getDate{): String
.* + getWeelk(). int

- commentList: Comment[0..*]
- RatingList Rating[0..*]

+ getAuthor(): String
+ geiTitle() String

+ getCommentList(): Comment0..*]
+ getRatingList(): Rating[0.]
+ addRating(rating: Rating): void

{(MongoDB)

Q

Figure 2: Class diagram for BruinNotes.

1.3 Libraries and Packages

The following table describes all of the major libraries and packages our project uses, as well as their

relevance to the project.

Library/Framework/API

Description

Relevance to Project

FastAPI

Python web framework for
building high performance,
intuitive APIs.

Used to build the backend of the
project, and create an API for the
frontend to call.

MongoDB

Database that uses JSON-like
documents to store data.

Used to store application data
(like user info), linked to the
FastAPI backend.

https://fastapi.tiangolo.com/
https://www.mongodb.com/

user interfaces.

PyMongo Python distribution containing Used to interact with the
tools for working with MongoDB | MongoDB databases from the
from Python. Python FastAPI backend.
Pydantic Python library for data validation | Used to define and enforce data
and type annotations. types, with helpful error handling.
Typing Python library that provides Used to enforce types at runtime,
runtime support for type hints. and to make the code more clear
and explicit.
Motor Python library that provides an Used to handle requests from the
asynchronous API to access FastAPI backend to MongoDB in
MongoDB. an asynchronous, non-blocking
manner.
React Javascript Libraries for building | Used to build different user

interfaces of different web pages
of our site.

React-Router-dom

React package for routing
through different web pages of
the website.

Used to navigate through
different web pages with an event
onClick of different buttons.

React-axios

React HTTP client library based
on promises.

Used to send asynchronous HTTP
requests to REST endpoints.

React-Bootstrap

React Library for building
different components of user
interfaces.

Used to build modal for sharing,
adding, and requesting buttons, as
well as input forms.

1.4 User Interface

BvuinNotes

Figure 3: Libraries and packages for BruinNotes.

Figure 4: BruinNotes login page.

https://pymongo.readthedocs.io/en/stable/index.html
https://pydantic-docs.helpmanual.io/
https://docs.python.org/3/library/typing.html
https://motor.readthedocs.io/en/stable/
https://reactjs.org/docs/getting-started.html
https://v5.reactrouter.com/web/guides/quick-start
https://www.npmjs.com/package/react-axios
https://react-bootstrap.github.io/

FULL NAME

[Enter Full Name (Firstname Lastname)

uID

[Enter 9-digits UID

UCLA EMAIL

[Enter UCLA Email Address

PASSWORD

[Enter Password

Password must contain at least 6 characters consists of one uppercase letter,
ane digit, and one special symbols (19#§% ")

Aiceady vegstered, S in?

Figure 5: BruinNotes sign up page.

UCLA EMAIL ADDRESS

[Enter UCLA Email Address

VERIFICATION CODE

[Enter Verification Code

PASSWORD

[Enter Password

Retuvn Fo Sign in gasp!

Figure 6: BruinNotes forgot password page.

com 5T 10

PROFBSSOR: im, Mivyungy

Fall 1011 Fall 2L0U

PROFESSOR 03, JAYS

Spring 1011 Fall 2001

PROFESSOR: Tohn o2

Figure 7: BruinNotes course page.

Enter Professor and Quarter Below

Add Quarter to an Existing Professor D

Full Name (Last-Name, First-Name

Quarter (Fa\I/W'\nter/Spr\'ng/Summer

Year (rvyy

Save Changes

Figure 8: BruinNotes Add Professor and Quarter popup..

“covesename Speing 1011 03, JAYS

week |

0¢, Johe: Lectuve | Week | (TA) G112 w32 @

Qjian, Phe: UML | Week § (Studeat) &2 D32 @

(Enter ent.]

FirstName,LastName comment 1

Lgv comment 2

Figure 9: BruinNotes View Notes page.

Name & Share Link

Insert link below.

Figure 10: BruinNotes Add Notes popup.

Request Notes

Ent
W

leek

ter request below:

Figure 11: BruinNotes Request Notes popup.

2. Description of API

2.1 API Documentation

Account System API = Database

Route Input / Qutput

POST /adduser Input: User information (name, email, etc.) / Output: JSON
object with new user and HTTP 201 created status

GET /viewallusers Input: None / Output: List containing all users in database

GET /checkuid/{uid} Input: UID / Output: True if UID is unique, False
otherwise

GET /checkemail/{email} Input: email / Output: True if email is unique, False
otherwise

GET /viewuser/ {username} Input: Username / Output: User with matching username
or 404 Not Found

POST /checkpassword Input: UID and password / Output: True if password

matches, False otherwise

PUT /updateuser/{username} Input: Username and updated user information / Output:
Updated user with updated information

DELETE /deleteuser/{username} | Input: Username / Output: Success or failure

Figure 12: BruinNotes account system API documentation.

Information Hiding

The account system API hides all of the internal information on how the backend handles user data, and how
the database stores it. While designing the system, we identified the UID as a way to uniquely identify a user,
and noted that this could be exposed in the API interface because it was unlikely to change. The output
information is also generic enough to be unlikely to change, while still providing necessary and useful
information to the client. The way that the backend internally processes and stores user information is hidden
from the client, because those mechanisms are the most likely to change in future redesigns.

By using the concept of information hiding, we are able to make changes to modules in a very isolated way.
For instance, if we need to split the user information across two databases, it will not require changes to the
client. Another potential change concerns whether the database indexes users by UID or email, but we can
easily switch between the two without editing the client. All the frontend knows is that it is sending a request
containing the user’s unique UID, and the backend responds with the relevant data. Moving forward, we will
continue to use information hiding as the guiding principle for our module design.

Documentation

In our server code, each of the API functions has a docstring containing a concise description of the function,
the input parameters and types, and the return value. An HTML webpage documenting the API can be found
here. The documentation contains information about each of the API endpoints, as well as the classes that are
used to structure and parse data.

2.2 Sequence Diagram

ClassSearchBar CourseBucket Course Database

Login
lookupCGourse()

User

| opt [course exists]
gotoCourse()
getNotes()

return Motes

dizplayMotes()

L
i
i
i
i
i
i

Figure 13: Sequence Diagram for Viewing Existing Notes of a Course

3. Testing

To test the functionality of BruinNotes, we have created this tests directory in our repository that will be used
in Part C as a centralized place to hold all our test cases. In our current state of development, our testing has
been more manual, to get the basic functionality of our APIs and pages set up and properly connected. For
the next stage of our project, we are planning to add tests for all the main features into the above directory. In
this next section, we will discuss the testing we have done thus far in our project.

3.1. UX/UI and Frontend Testing

BruinNotes aims at providing simple interfaces for users to share and request notes. Therefore, most of the
testing that was done in the frontend development focused heavily on the scaling of the webpages on
different devices of different aspect-ratios. To do this, we made use of the “toggle device toolbar” that is
available in the inspect mode of any Google Chrome web browser. However, our web applications do not
support mobile device aspect-ratios. Other aspects of testing in frontend will be described in detail below
within each feature section.

3.2.1. Account System (Signup)

http://htmlpreview.github.io/?https://github.com/dylanphe/BruinNotes/blob/42fe827f5d7473ab92b27274e614118fc0c5bb89/backend/html/main.html
https://github.com/dylanphe/BruinNotes/tree/main/tests

Like every other account system web application, BruinNotes requires user input validation and user
authentication. To set up an account, a user must provide:
1. A full name consisting of a first name and a last name, which corresponds to RegEx = “[A-Za-z]+
[A-Za-z]"
2. A unique UID consisting of 9 digits (RegEx = “~\\d{9}$")
3. A unique UCLA email address, which is validated using another regular expression
(RegEx=""[\\w-\. J1+@ ([\\w-1+\.)+ucla\.edus$”)
4. A password that consists of at least 6 characters of at least one uppercase letter, one digit, and one
special symbol (! @#$%" &*) that equivalent to
RegEx="" (?=.%[0-9]) (?=.*[A-Z]) (?=.*[!1Q#S$%"&*]) [a-zA-Z0-90!Q@#S5%"&*]{6,16}$8"
To verify the accuracy of our Regular Expressions listed above, we used RegExr, an online tool to build and
test a RegEx. To test out each object validation, we used console.log () and alert (), to output the
boolean result for observations on different user input case scenarios. One test scenario was when a user
clicks on a sign up button on the Signup Page. If the inputted information matches the regular expression,
then the account is created. Otherwise, an error is displayed. Therefore, we checked our test case scenario to
see whether they are consistent with the result logged into the console when a user creates an account.

Checking the uniqueness of the UID and the email address requires communications between the frontend
and backend through the calling of two APIs, which are GET /checkuid/{uid}, and GET /checkemail/{email,.
These APIs check through the database and return boolean values as responses to whether or not they are
unique. Therefore, we have to check for a scenario when a user attempts to sign up for an account using the
same email address or the same UID as an existing user. To test the frontend, we made use of
console.log() and alert () to observe correct behavior on two different user input case scenarios of
duplicate email/UID and unique email/UID. While writing each of the backend APIs, we did incremental
development paired with extensive manual testing. This ensured that each of the functions was working
properly, and the changes were being propagated to the MongoDB database.

The success of signing up relies on the POST /adduser API that adds the inputted information into the
database. Therefore, we can check MongoDB to check whether the information in the database is updated.

3.2.2. Account System (Login)

For login, we must verify if the UIDs and the passwords inputted by users match the one they used to create
their accounts for authentication purposes. To do this, we made use of the POST /checkpassword API. This
API takes in a dict consisting of the inputted user information, and checks whether it matches the
information in the database. If so, it returns true and the login attempt is successful. Otherwise, it returns
false and the login fails. Like before, for testing, we used console.log() and alert () to testthe two
scenarios that can happen (password matches or doesn’t match) for both frontend and backend testing.

3.2.3. Account System (Forget Password)

In a third possible scenario when users forget their password, then the user must go through a process to
verify their email and change the passwords for their accounts. The testing is done through checking whether
an email is sent on the send verification button clicked, and if the password value is updated in the database,
if the users successfully verified their email. We made use of Dylan Phe’s UCLA email to do that.

https://regexr.com/

3.3. Search System

For the search system we allow users to search for the class that applies to them. There will be a dropdown
menu that the user can interact with and choose the class from a series of options and possibly search for
them too as the list gets long. Each time a user needs to add a new class to the search system, they will be
able to enter a new page to add the item into the list.

If the item exists already it will be compared against a list of existing classes that have been entered in the
system and not allow for the user to enter that class as a “new class.”

3.4. Courses System
The course system frontend is tested manually with relevant json data defined in the frontend and manual
user inputs.

For displaying the course data, one test case scenario is no professor or term is recorded for the course. The
outcome for test success is displaying a message that encourages the user to add a professor to that course.
Another test case scenario is that a professor exists for the course, but no term is associated with that
professor. The outcome for test success is displaying the professor but no term below it, as demonstrated in
the course page screenshot in section 1.4. For the case where professors and terms are present, the successful
outcome is displaying both professors and their terms as indicated in the screenshot; if more than one
professor is displayed, each professor’s background color is assigned iteratively among 6 available colors.
When the backend communication is implemented, the expected outcome should be correctly displaying all
course data on the webpage. For each test case above, outcomes for test failure include incorrect rendering of
the page, incorrect display of information, mismatching colors, as well as error or warning messages in the
console.

Tests that involve user interactions include pressing buttons, toggling popup modals, and user inputs. One
test case scenario is the user clicks the “add professors and quarter” button on the course page, then a popup
form is displayed, and then the user clicks somewhere outside the form or clicks the close button on the
form. The successful outcome is the form pops up after the first click and disappears after the second click.
In the scenario that the user fills out the form and clicks the submit button with all required and valid input,
the expected successful outcome would be displaying the newly inputted information in descending order of
time. A failed outcome would include unsuccessful rendering of the page, unsuccessful closure of the popup
modal, incorrect display of the new information, as well as errors and warnings in the console. In that form,
the user can choose to enter a new professor or enter a quarter for an existing professor. A successful
outcome would also require these two choices to be mutually exclusive. In the case that the user submits
missing or invalid information, such as inputting 202.2 for the year, the expected outcome would continue to
show the popup form with all existing inputs and highlight the missing or invalid fields. Outcomes of test
failure include disappearance of the popup and the inputs, lack of indicators for invalid fields, and form
submission with erroneous inputs.

3.5. Frontend and Backend Communication Testing

Our web application utilizes RESTful API’s to communicate from the React frontend to the FastAPI python
backend. Once the backend receives data, such as user information, we can insert that data into our
MongoDB cluster.

In order to test this data communication from client to backend to MongoDB, we have created logs along
every step. Client logs the post request in the browser console, FastAPI backend logs the HTTP status code
and content in the local console, and MongoDB data can be viewed directly in the GUI. The following
figures show the process we take for testing.

signuppage.js:28

password: "joebruinl23“
uid: "123456789"

_id: "6361bcBeb3cdd37eb5baTa26"

Started server process [1
Waiting for application startup.
Application startup complete.

{data: {..}, status: 201, statuslext: "C
v reated’, headers: AxiosHeaders, config:
{=},s =}
» config: {transitiomal: {.}, transformH 1-10F1
vdata:
email: "joebruingucla.edu" Application shutdown complete.
fullname: “Joe Bruin" Finished server process [] id: "6361bcBeb3cdB3Teb5hofa26"

;ullname: !
uid: 123
email: "

» [[Prototypell: Object 127.0.0.1:0 - "GET /Signup HTTP/1.1" password: "joebruinl2a"

» headers: AxiosHeaders {content-length

» request: XMLHttpRequest {onreadystate 127.0.0.1:0 - "GET /Signup HTTP/1.1"
status: 201 127.0.0.1:57701 - "OPTIONS /adduser HTTP/1.1"
statusText: "Created" 127.0.0.1:57701 - "POST /adduser HTTP/1.1"

» [[Prototy 201 Object

Figure 14: Client console Figure 15: Server console Figure 16: MongoDB GUI

4. Contributions

Jinwoo Baik helped with the initial setup for the project, by investigating the possible frameworks that could
be used to communicate between the frontend and backend. In particular, after some research he set up the
basis for the FastAPI Python backend, which communicates with the frontend with GET and POST
messages. This is the basis for the current FARM stack of FastAPI, React, and MongoDB. He is currently
working on the backend logic on how to deal with the addition and management of courses, and making sure
the frontend and backend agree on the functionalities that they implement.

Dylan Phe set up the react frontend components for the web application where he created the required
webpages and installed React-Router-Dom for routing through different web pages. He also implemented the
user interfaces for the account system and worked with Aiqi to design and implement the user interfaces for
the course system webpages. For the account system, he worked on the Uls of the users inputs validation, the
uniqueness of the inputted uid and email address, as well as to see if the inputted uid and password matches
for their account during account creation and authentication process through the use of React-axios for the
communication between frontend and backend. For the course system, he helped Aiqi with the design of the
webpage and the Ul within those web pages such as the note sharing, requesting, like, dislike, and comment
sections.

Smayra Ramesh helped to create the UI groundwork for the design and flow of the applications. She also
created mocks to use as a basis for the current app, although it has gone through multiple design iterations
from the original mock up design work. For the UI front end components, she is helping to implement the
search system in order to be able to both input information into the options of classes as well as choose from
an existing set of classes others have already created. Worked with Aiqi to determine the best way to
implement search page components.

Aiqi You worked on the course pages, with intensive help from Dylan in the UI design. She set up routing to
these pages and used mock-up data to display relevant course information. She used the react-Bootstrap
library to implement popup modals for input forms. For part C, she will continue to work on input validation,
communication with the backend, and the report feature.

Jack Zhao worked on setting up react frontend communication with FastAPI backend. Using ‘Axios’ library,
he was able to successfully incorporate POST requests in the frontend. He started with the Signup page. He
created states to save the user inputs for account creation and passed that information to the backend through
a POST request. In the backend, he was able to create and append user classes from the frontend to
MongoDB.

Yunfan Zhong set up the MongoDB database for the project, and connected the FastAPI backend to
MongoDB using PyMongo. She also created a base model for the user class, as well as a model for updating
the user’s information. To create a basis for coding all future API endpoints, she wrote functions to add a
new database item, view all items, search for a specific item, update an item, and delete an item. As she was
writing each of these functions, she also did extensive manual testing to ensure that they worked properly,
and the changes were showing up in the MongoDB database. She also created three endpoints that were
specific to the account system. The first is to check that an inputted password matches the stored password
for a given user. The other two are used to ensure that UIDs and emails are unique to each user, by checking
that they do not already exist in the database.

